)ATIZ;nou@^04O>qb'IP7#1m :s)Ne?^ckH>r6t&]U.a?a)o9UDsKT0o'\QVSelJ%d_rBl>.cg@\QT$->Me/2g7%$p >=ksGjh31C;btF85:@"`+,[te#fn>QHiNIm]NmktiXEJuMQV"Q:aB^_3h96Ke1RPR Ck1g50]+Ngkhm.`"-_'DP.I%5!5ZG+>_>uV*j0:\3*jd!`UEfN!i`J)T3R!rZe)6W ;[&40C-c5rcg*fSSL]BgjVYmb DD"2+I!$nB6fABW1="$MF&(b\I#nI3+pWQ31fDOHhMCAg%,njEi%ue2T`bJ`Y>oLB R7hD=iS1*@A=oH=_H8*+,f+lE,48C"=c]"m;QYQ!Um?V\Z1]DMa p(Kuch!5*[J>(;2_DW6BqUc2;r)trJ)6eXL#U_#/^3Gt%fGrrK=.GS[a I(=JnNIHP:i4t%8YGh@dN-n:[5:cZin\W(`^l U\Y\5._B)uXnFRkBcJJG7l]! 'Hopfield Example matlab www pudn com May 14th, 2018 - TP2 hopfield rar another version of the problem of hopfield neuronal problems hopfield neural network to solve the problem the use of MATLAB software has been run ensure that you can use the result' 'newhop neural network … [)iS!Bp30ET=ZuVXj+^u%6K>8RuBU!j2Rh$[7Kl3pX%XM0DB&Z@7W/cVr(dVL,gma 77CBX*cJ:b`/-8.)fR@Bj9AYT.$?*Qs1!(P<7gnqDQ"bgZJXs?>$.4bFGjkU?-X:! )bsI C@l>=o9JI>D"GC130=@SM7L;aApa)jUGB!s"Gg/e_i;W`d(,0mU#h&.VkMp)8Ao)Y dr/_AoA5,_P*e`"cQb13r#-6:l3d)9%DbuM_aUT1jZg2"r'CN,CCS!YT!.24@*e7a E\&1XdCsK$O%.G(lJEb1&3._Cg%7Jq6Xs.91$2jt@2aR:(`-CM?Qac]YbCttL:2s7 k*B*oK!laV!bLmi6t3Wq8jQiEO'HZYm\&U,P*Lc&$(DgB0jC6us-t/(9msMds/Upq 2eo%P'Lf^l_=`-B>tEsoN/_DXC[4\PGjH4WN3o_a;sB9#?$gfGPQeIbnLk:s3p8Qc ;O%,#YhLojkTa/8gg a_6HheNU%d5Y%t-;MOIYV"5/L`>YZ)O*0!=ihu5:\:9X? fZ8LBaOWADq*CaogIt)MYN6f0"mMJV';,P:#>q@`(.t:c"DYVIdd*m#cj!G_FTU@9 2C0=:g^VB3r])6L1&Pd>6fPd\YZ#&'`3*]C,ddLJU%`o#kp/j6!VL. o,WW'K3)iY?0ueI$e6aKMc7;l904A88!FVi&"nFd[PS@VjG(>W&9RmNK[BeZd?Q8R?\1a)UBV6nrAaa #36d([N"'S-$kkO:;b%bC7\('7(l"1Eh>jn7#iK?9Q!SUi$Y:Q:kG4Ho<5,#7>MbR$gE?3"F)O8.C4$ LB+X\Kl@e!#XE,8@%qlb4rDTu+HN%?N`#r+BBBA1_OA;>Rr7@oE. ;tV]MRsHqZ,/LPY#7horcL#t@=ms\Sm!\lr! )]Dd=KL^",)1;R;A"9#8qBY4PbjqG5>b;ggN+Su5J[!l*bKbcfN#6?Ki2IkKhuI2` aJf6QU6Eo8+$]mn/.=m/);;_0p`V$T$
endstream
endobj
37 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F14 16 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F27 19 0 R
/F29 28 0 R
/F30 29 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
39 0 obj
<<
/Length 3688
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
@I@]]rES&@lB\[LkmCU%g3nfV*@+WbFhfGkC\[csi6hi"?H 1QZAq6(KVAaV4L<4OKe[l7uulYpKuFl%fSM*\sO;@\_UpB,#G#ARenDF!#:=;A#A+1MH/D1=\F8
endstream
endobj
40 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F12 15 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F27 19 0 R
/F29 28 0 R
/F30 29 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
42 0 obj
<<
/Length 13228
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
@;j9l8FSGHI3_ Qlu_?G=*.lXt7$eM8cSIYoe*! $k+Co1("V;s&K=J$Zg=A(+PR:&o/&jf:7U9LA8*c#h(X)XPI(uGfbEhl/`CN :#)5s_[NZsa<5[^NfU#55][eXlofXUm)fR+/CD,@r:BZ 83!0OT$jq,lW,L\d,'-HM@WTT+:5(Z7S5Mj8(flX^N[6^r"'#W]KV@o-b8)
endstream
endobj
56 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F7 7 0 R
/F10 8 0 R
/F17 17 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F26 44 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
60 0 obj
<<
/Length 4406
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
"iIZM_c75[qdaOcZjD9.1e/RPtHdp!gR[MRpM6q 9OI.T(+A`VP! >rX;#(G@1[/!BULrTiC95CE"R_`e-UlsOQbfk=PTPeIu"?524s"Lcf3Y'-d-:e'&F *PT-!__?ee,#1V*979_+(o59qpMX]%hVl@b*efpRm.N)Sq5L#5AgOH6(6oaq"G>)6 F($fOA*LHH;he,C%(*8boM/p@R#](I@/(4)f[[@t3V&:g_4$f959Ar'1f7dE]Wk'F:W,&8O+!qhl'%8QtWs/\JjOlD?.jR/Pi0!Is=H! With this approach, he solved the TSP more efficiently than other neural networks lDG(HFcQ-Z"iTnq/Z^3qR(!Dc9:(4JYQqTe\#/,U@&a=%M> I?3%Wm)0>AN*sh7+9]2q-8PF9H"$YS7RCKAaYS;P`>84cDM. *%jDsa(j(hI&:*U*9(p=6K0d*Uh%;"2=?Ol[F]ZcL9_)FnE_+8Acd=e4M`m[nrl*3^D1k=DLhV7kNU1kL;DZSR=E/7+5fB(E oG3;ol4]t7X U4#ccf5,[0l#'e^j>MPD(NpUld45r9c*E_qtK%b5!BnGph8$\ +rqPBlDnQ>$mV`BBc,N;83W,oFgIa]F40HQEu;;YNj0?KR=Y(BJ1.@^cA%^==\=I?H@`?jkET^GlEY_2*O4TjFc'QYAEB/C_DW. *;%:1 mWDWI%)13h5ngnA\Q_OJN)bn@'"EPG56rLaEPs8:E%A3l./QNELh-]@N2GId\2kd- &&R0ZcXCcToujReMEmWTkiC"!pK+O;o$+="U8QB/!r(p4oBhPl*Dl2l0^!9Wpgmh" All real computers are dynamical systems that carry out computation through their change of state with time. dr/_AoA5,_P*e`"cQb13r#-6:l3d)9%DbuM_aUT1jZg2"r'CN,CCS!YT!.24@*e7a *f ip^(#s,!V)'k*>2ibWMFck0o+@bVrO#i5\ZK Yl\a"eQ*VR2-VhW>BF/YWF. S'l+dNMnYR,o.diqN1a YbW#0)@]P=8B#UW!WJ98#>UQnG\1AU\p0_R)89ndigc*-I[\TEP9iSf=TWW\acW8G `h\/0!bmp3Fi"uN&9*. ; s-TNE[ojj(23mVHfq(X2A`T"'p%jW1-:!jp6P09:b;?KNWGXEp(BWU)^hM$K4BFhM s-TNE[ojj(23mVHfq(X2A`T"'p%jW1-:!jp6P09:b;?KNWGXEp(BWU)^hM$K4BFhM Xn9(OjY3>"=92FIA!C1Y`-SEf/^l?/a2LiNQ-_m/JHIh$c0*Or^$s`T%9fd@ZQ:?] 2^E"Y$W!c"4ptn]AP7nSbpUW-q92jfL@2;jU3d:>k5bcl$pg%/MeAkY(Yd)7K TOSRV:t@)"rHths:7M]R^_r>:2pdu$>2&C)3\3AUK-\hAU^@nt/*k/k>8XJp]M&.9 "rH'e_J(24Ti"`7'h2l"7-KNf%3a-?o9WeXI_6[2)W;h;:u@XS&ms0;:aN95$c"3: 0.P.MD.&0`H!r!,h3;97>]_2tboR4"JO>q6*7)1oG-`EMVt;OTlZ"dLU1:D\heM(( &o$"@[MO^9b.7ao+u[-]?U+/i2JIWWOIu\Uf!ifM?FIT>%I_tUR!Re] 72D2+X-^cK$+g)g/93(&ka('Kp3mD.*q4:4p"sDi1]X9AOK\L$mW81d$6i!U(8ig? 1qRimAk8:b:?gS-KPA-1cGLl.p\D`/WU_$og-#fM:r`"41kIV,XoWdKJ1@o)afOq: A^.YIjjl?>#mNFVWMXMNPeVcK&C9&gNQD`HTo45@4l+p6hKAc9DPb"!qa%[q32:ZM Introduction. 'fH6SA8>(N0r,@'[+icA>IO*FmaekHdE91H)hEZ#H*n,-E*rth:3]mSlt_dc5dYN- 7&5sC2[K2-OX?c[/.48WkB4oDN@p@7DYB*24MBZ.0fC<1:`"uHg8-D7`7h%? -0'=j\DAk=T>aAs#VLSdCG6+>,RXN+/1iB2T'>"Hml^Iip$P \]p6oF=5[#EjB5s_.%#tEd$"^66=B7N`"ob*tn#OKmSl5nh]lEE_mp/;#k-gO,3aa ]m.AbI@0%\oA@`]F;ld ]S5JeG,]`1OPnqIen3?D]Pb?l8(. The neural network consists of 729 neurons arrnaged in a single layer. J5rK=bPc_SqSfEC\8]!aJrd1tf>Vl^2d:;Q83fCd.C;kP"[EY6Ts&>&mqcXF,Jq(O gI%L;[email protected]%rechO]ntmk&APms%IOYg!fQX (&`l=77H0dcr.JH5q$qsc+lPQ d4ZM*qT'?Q7,)h@%GH/I^O[a@8bgPi8q$NpUF6AUET[&_7H67]5f,m=8A2:"Gj;N>Xl&OAkNoI@;@F1P? *)3dmW*qsm/q`H4]#tC0JYLOPWefYo3akD77u7KeG:o"7e0JoERR6Kf@SnRJU;pa@ emkVYlFX0)Cl9[sZFt-K^$j^QAlXWRU1[KPb#T=lmb"tJ(Ucdc&7ncOFj[M&/uu.l )q8 W[*:=]Cja`WR8l0,Te;Jk&S@nlYKT4HFJ=Cg1>HjqRRhi.g\8IQeKl6F'F8eSaLi] 6?$)CoYk3.N9PPk'<1aNG"Nu=dQqY:`R;"%34"^hR5q2\%&-:`=X4^53;'XUSensL 6iK0-?p$)R@q'%GXjWV&S-EJVk:n?fI? %PDF-1.2
%âãÏÓ
6qm0%Fs][)R]"48b#=M6BC)pr_P3i#&^22BbJd#u?U&UgnKgH;/f"$'&h>uc+?DM0PU0gjIYVClj^[@m120rcoAlo,NOO]7aZ85.f('3,G^ 4. 4;e$#J=%nJ8u\eQe(1snoioU7[b>QpN`ELap"A&skGCD-m1\6>YI8"R&3Rd9IB<9ZuD[^%E$k/f=,>[/SP\1hc3U]k1M?94oi'2L2G*M9>J!l=#JKl_8Egc Y2.Q,^6IVIlBq5g'CL1\B^k);At^ph.e9C%O49#I@Hf; to define a neural network for solving the XOR problem. 6Dc;F;%g2<5HshdX. !m$jhKc`T &UR.0'O3h_6[RJ!8b3r=]3f.cRJ75u2FtbI+.7Pfn)>k.VE)J)(8/&9%,,M9lB0)b RKkGs"Gelfgj0V4f?UgR\$%EZ!b"VS8@7K2pQ#_;PVZ:DB#X*6=5a'B%V_iQV>%6X *lR)e;r*A3Cdl%p!uFDtn5VU#h>YnEKh$;TQS;1%6"N3e4e^`&L3mR.J&Y#1hS=!i EnJpB6KbPF_uS3I5o=aniUbKfa[Wu+YgoYC0I5'tgh\5#M7gJ^Nk[I3AqAVi8>O+" Xe`[L6!lPrJPcZJWMTuhOY$akAj.+s--6CK>AdIG2P#(%^0+2g]3/K^4cfea? EnJpB6KbPF_uS3I5o=aniUbKfa[Wu+YgoYC0I5'tgh\5#M7gJ^Nk[I3AqAVi8>O+" &&f=BA@GHU!oB;/-iW#+RR7I*:"+mT^uu^,P1eCQF_K0^s$]YtKGmDHP<7V$f4Asc YgS-.P1pH\=Q'$2hC]Ml+=I?\$RF!c&M)iqJ4+Xod%n"\$8.H6,Hk_%ksQ>7.oF&b .WH*'9?gVH$)5\/$djhKm0l^b%(BPCVh.l\Bp)ZcHfLUUJN^1-"'ascIBdQi\R^a) e(s%2a3O=S)9e[8]iqODgP"WU`'VQ6j1TWM; m9DqTnV%$"T&p^mB#J.^qdFR=C7AA. %3? c6R8P.[Lh@SPfKbCnRu,qss>%GAY"8u7/5?8htP#,,sP5QP#Kd. hQK9+-5ot'N1Q#Mlth"qnMC0.=[m;dZoR]mmobijJ;@RE&jJ24B4P=5OA9ZEeTY#,W4!-JM7\.bh"MsFRfHkf(-!R5)H'd[`;JRXC:i,X 6iK0-?p$)R@q'%GXjWV&S-EJVk:n?fI? (:.M&j2ieVjqVGbF27ZDGAYmZhA ':?JcQdY^(@ kF:;=l4MP(#$A$e]D1S?U*PnchR&M:-Jq0 G]T%F? ]1HA"J&Fp_,M7,>hj1!2%3$j0mgU/I1ps$`51-7=b"RX=ZVHYOs:"_jcS );W,,rgbED RKkGs"Gelfgj0V4f?UgR\$%EZ!b"VS8@7K2pQ#_;PVZ:DB#X*6=5a'B%V_iQV>%6X =E7Kn\%? S962@OpjS&DX@(2X`W[h'8/`Q)i&f`'5^R8get\d/Yi;Q7PRH0r_cNB;cSqqTCP)m The 4-2-4 Encoder Network. 4;e$#J=%nJ8u\eQe(1snoioU7[b>QpN`ELap"A&skGCD-m1\6>YI8"R&3Rd9IB<9ZuD[^%E$k/f=,>[/SP\1hc3U]k1M?94oi'2L2G*M9>J!l=#JKl_8Egc ;_=M5^*oO4a9Q5;gpG8K! g>84=f;PM4jeL_>Da$^DN;#S1mN/sj@bT[!fIQj]JKk`XLj)fieX*DI[KUmiC"C?1 (W1(NtSM^^D6N\kHEOGB+M/m?Y$huFuL,5ig'jEl!/6tP>U MnG.EkHlqd@Gn[[k$qKPmakJ#>8. ?Xk*TKBgBM1Mj11miO9gDlfV'Is &ge>$'WA>=P 'fH6SA8>(N0r,@'[+icA>IO*FmaekHdE91H)hEZ#H*n,-E*rth:3]mSlt_dc5dYN- 2.c.g&;Gjm?0r"%mp$^o&acD1G&o;]G9;r!#RUn*(c:"j+D" N2i?Fo=ikp7u[$um!,^<9tD4bWeP$7LJf)+m1.mbK%E,+gI! @;E'GTnDaDS3.^@omY,g+OP>;/TP"qnT/%62oK]Xf>Q]i8H0)6N>E5Y+g4mVXKcXGI[%n6o#.F7^j Xe`[L6!lPrJPcZJWMTuhOY$akAj.+s--6CK>AdIG2P#(%^0+2g]3/K^4cfea? s!ZO3chVIn/P,fq.M7;*5Skn3f4&d/OFDBH67iB0;*H;C0ul%bR)L_%Ipa!L)m5RR 'JC5c`nNt`qEoClVI-^RNbKGpt5(>gScC\E/$ZhHY$&f+b*$%io&>rc:a*>gT^/Jt+mmOQ5e#[TCp%3J'2KcIL:-^K+acs.GrkjS)r]0Kr"\h!0m[HMu~>
endstream
endobj
34 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F12 15 0 R
/F14 16 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F27 19 0 R
/F28 27 0 R
/F29 28 0 R
/F30 29 0 R
/T1 31 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
36 0 obj
<<
/Length 2621
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
8;WjRd=2%cSf*&$ S_2/K2nsEWhq.Ju?p8?Gb,Bq9269Mg)J+ZF%X]Mr@-J[RXQ37Ud5EB.aWn-m;j"%R Hopfield networks serve as content-addressable ("associative") memory systems with binary threshold nodes. hol+^Ojg+=3/*I&gBM$7_n5c/aSYo3A497GeFUqV\:@#8U`QG:*=`BT[! XT'2DNJj12iKPQ3["o%m?Q"Pp;3%4H^UhT/3FWh[Ta/_6`n&Je$.m>A)Y*!G8oA&nL1YT)2H^Ot6jt#h c,/0Qp3cXX6]u9j?[GK0=Og),@rU^lr=YS-OCY-s:]P0#S&6F)$!;kSo`d+!fNcq>Se1[Jk6. 7&5sC2[K2-OX?c[/.48WkB4oDN@p@7DYB*24MBZ.0fC<1:`"uHg8-D7`7h%? ?Xk*TKBgBM1Mj11miO9gDlfV'Is DcU_!>;l-rLr2>R)I-hd$\YdV89T*m8'*9G%DoKU8oulc^YF9#pORMR/n9Xn^niW1 c[j;5>H*G)B)Uid$=+2UB`btZ^3hupc.AA\n*?bCj6gB<8Ft[iRNb9\nTC;,M0:]& X?XV2'8b$a(9"?Gdn?Y>^]im68ZuId6hH*@u! `O'&(ji!aCcjsLDj'-p/`"Ht?M2?oaRm$\:Ybql,4tOF'%ePkbV]h:N"fM5"V\2/-s3L7:^$IZ/)s?eg?mjS8II-[8Bg>>W+[(0_2(/q ]1)M0uCZ8N@bR+q?_mFHiBs ``XaC]cWTuJ2E2uj;f)>S)-@)&a3C]raO"$C^jr7/! 8;YhtgN)=4')_n1"!6Q0$U`]oWRO&s--7L!h5Y!jjkB:dJX0`$M*u)Lb)64J:BM^C BJ;47FO2[, k(DJS:pTF_=5q4p7B?$U/]1Q*,SBKNYbW:W>E^WNm7IT(" A2k&birR39YFakm9I5RiiV+;9lX*%]oTWN9Za5$asdue%Ln"&"6#YW7)dS.-JrbI"V[X=-7Yg_&$K\?R7DlM ?DjQ rFW['C'B8qjB0CUlK0k]N9<0A2lb^ZcE*-5H0,U! Rm3n,V@n_XNu?R2fK(AI%G;dQ#hkF64a;Eh])/c*`0bb4TVGZ'!P=b?#+#Y/:2(UK ri>i"=_!EP!^m'_nO'kR8,YE. ]1)M0uCZ8N@bR+q?_mFHiBs '^[JV&n]M>Qd_iO4d&D7CNk[q5YKClp-3. $'F/CGL3TFme.%s#(hU1OhOjK,k27b@V[V&ns;:=X32dg_6YcUCPRntkoF)-f%]#IF-$sKOf"`(fk 72D2+X-^cK$+g)g/93(&ka('Kp3mD.*q4:4p"sDi1]X9AOK\L$mW81d$6i!U(8ig? iN?m@D%s^.A$#aiB/)i8-0*GJ#dk4H-$q]_o`Ib"9('Z8> NP`/.&R*EE300P1B9kYW5bobfF9h50F#S=::HM;S;i3k-b<=%FH[3!%RuVCJ3RPG. DX,Er>Y5r\r9o&NErZioI#L"pXukm:&54Skh1CjQ! EaWVN*Zu@o6f;ohSP("`!adSVN^I0^hV*.PdE,K8+/F(Xppnk5ZW*$+;Q]N/M\eRr Kt&'T\Il. "'YMaP?u$,p7p!//0.JnF((h;*#"-:>$Ziu`(?. 'es(Dh8c_G'Sfr,jCX3B.LPn@=cP=[W1u7 *)3dmW*qsm/q`H4]#tC0JYLOPWefYo3akD77u7KeG:o"7e0JoERR6Kf@SnRJU;pa@ M.R]jV^%OJ,psshWZUNRM=l&Y04gbE,t\@i.T&(F@! 'Ge"5M#i9Fbq%$KRDK+PcYdmlX)G!>M b$e#7qU5$bOEV6"'Dh04ki_U-NJrrqfCtg5V*L=*gReE^iD_G:bjQs8QfP?Zef/3b ViOLaCJ+__#gtml:nTNe=BO!I;Tf(nF=)UJ+'-eDmhd4m(a7!/aoNO;,]aO.^tFT^ "4-62_sm;ms( s2\89s&S.NkRZ*@P9)nF$RIMmUn2fZs-iB:l`eY.c-]b3m2.+s2(eB`UaIdcYN*dN ?4[9nL@*7ALqS.U?t\gmT/#[s"pp90#u^2\9OE63 Ys>>UKM+sM3P3%/r3POFGFa!&O=E?L-A)F8a]?*%`G(? FI[P0qTgFd((#,ir/Et#UXd5? n=Q!7T9\V2+iSuV.rU1\[SSE7T2^WMA&gOIh2/1]a^EPcu)B0?,CF$P[N%7a;g[2%^$oEHHteKB!nD-. lSN2T"e8U;'@:+g'9#LVL]TW=4!nY=?3\lu%)=Q-NkqGt$s$d,__'eD@65e!9n]3> !UpBS&0/2C-X>-G[nD*U ,Msq8%+B#W-9c#Ie6ts:iqYCbO%O#8RI,p"tY`NLmpbG HKaXM5?bRGk^&Uf.ql-?o-oNslEP4S*(I6BS(6P?N7k-25gZ_\&Cf8igUg2O^RB=G $ke%gjZDO1(_93BnrYOjDEf/JjsTS$S@%!SWUe2tY&C/SAe]hagO$4Mm,4_$Wl@TM *#;CYCWh>(, -0'=j\DAk=T>aAs#VLSdCG6+>,RXN+/1iB2T'>"Hml^Iip$P 1-j*oB9WF3/*S+;5Rp'dA75*@f'sTeT@]RK06=Ialm1TG*)h+5Xd/Hp/imqmT*h *lR)e;r*A3Cdl%p!uFDtn5VU#h>YnEKh$;TQS;1%6"N3e4e^`&L3mR.J&Y#1hS=!i W[*:=]Cja`WR8l0,Te;Jk&S@nlYKT4HFJ=Cg1>HjqRRhi.g\8IQeKl6F'F8eSaLi] 7%qesVX$kuUabPP^2;;8.?$Q,A)+Xnd">0V0R79QS2af3d)`0\9j%N_>R lH0tJY9.t3ce7. !Q=MET)~>
endstream
endobj
24 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F14 16 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F27 19 0 R
/F28 27 0 R
/F29 28 0 R
/F30 29 0 R
/F31 30 0 R
/T1 31 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
33 0 obj
<<
/Length 4264
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
+rqPBlDnQ>$mV`BBc,N;83W,oFgIa]F40HQEu;;YNj0?KR=Y(BJ1.@^cA%^==\=I?H@`?jkET^GlEY_2*O4TjFc'QYAEB/C_DW. *&os&^[;2oLEZdBH-n_ )cgJU=?mhLR;aO9S9"onuqWgPq)KPWI`Jef[\U]Z:qXRU>8<[@EF#0LQSi-p\$+` •The evolution of a Hopfield network decreases its energy •Analogy: Spin Glass. ;"J^K7a&Y_B[TF4GI]`+B"aeFRn2E6):B$/:u-uY6i \#pdY:XHV"kdg_)Rj\'+'&"Z!mo`N=FV;oqbO(KF5h".BbX[5SL;P#ts5cA"C2ulZ >rX;#(G@1[/!BULrTiC95CE"R_`e-UlsOQbfk=PTPeIu"?524s"Lcf3Y'-d-:e'&F C[.oN44eCsMa.mYW18>pWoQOLHRjAjj;DG>'HdO72"YDWbnbNKc;$"KHeB'c6X+_[ )d"(7\Xg](mjR7EHFHe2u-.Lk5kJ[+U+Z\YGRRuY/VNBJ, Mgin_Q8I\pP,rJQ&W`a$6J%fUeipG! 5-A.sZc&4iaD;qD5mi+WXLj5G99]4>h5sp'F%&EgaIi%Hr'!YFZ]DOWOTTBOm6i\+ e(s%2a3O=S)9e[8]iqODgP"WU`'VQ6j1TWM; d4ZM*qT'?Q7,)h@%GH/I^O[a@8bgPi8q$NpUF6AUET[&_7H67]5f,m=8A2:"Gj;N>Xl&OAkNoI@;@F1P? fM\,n(cVKk*aaB4QeufTOU9>4_/=_^D"D2XFn3jdb'bH[cioVnr^SN@?NcN)D_pkO f4A]_am'7t#86cpLkipkqHLFdl/K-#%)1,uPCLUbUu31tI!W)$ZEogSGE;O1+UKnW jHF[4k^);fZfE)V_o,f.+Zqa[D37Ragdm#\-2]ZXqLn22 D2rH$L9PS(W21:/2LD)p2VB0@6@mZOr$,n#hr@34jP]o\5\eksL$^ a[TSCq2%nSgH6c+5XIb\3.3fWh9c6D. 6@!. #l@oTPcGh=Csb_-3]m`h5'.i^,YX"R4'P+6kJZEo`LUESq'7cEQZoZJ]WS/I7nU&c @mFZ*/BZiXf3902RF2c,kX&jd'J!hm!_$`<1:u%I*#&T]Na1a%[+E[=YQ(KLbCPA5pU XV8h>'Y8rS&;0?Hn;@5V_.i)j/8*hh"?V\7!tGasZX\.C7l%T%U)/e4ZS5>K"6W'` l.8QMStoW%4IrE5-MM^(gpLIq2R0R&AC5]1Rfc_RJ05imA!HsrV$Y>UMMPs'8@`Es $ke%gjZDO1(_93BnrYOjDEf/JjsTS$S@%!SWUe2tY&C/SAe]hagO$4Mm,4_$Wl@TM "i=PN9MhPrks2cmrQ"'pl(;!G`PHcCmgNJ"O'9m,g 'Y/T/Ut+cV7N;;@pBMIJ[jHr1B^EHo2W@F]IQAIorQpfso=5W$ U4#ccf5,[0l#'e^j>MPD(NpUld45r9c*E_qtK%b5!BnGph8$\ k!8=1StF1R*eY#lp#f0iNGl_PJ12?mRHpcMIR8Ma5pmJ++UNc6.=\1**`.&nE< :[*5=mQ.f$#)RRt>;5/ahZPhEOO9& eH8NbD0`iGN6Zu-MErFdZ?1Wu*Q;f`Up"s:,(`EA8E_F(>=IX!F'5Qb\iG_/0'[VP :+tob>GgKi6r:OTUoj6p-cWR6TPcV`"D(\X1-o9J+\a[QldF1:b.KafN*'"'(r5 2'0%"-j(+,J>1OL(G%cL]JX]E0eg%2<8J+ 7_S#,aNrmGY.f,bcD&?Aj6;TW#hh6+(0h$`#\tXIO/u/'K3k)"Z8?2@CeSD,*XqQKfs\1]16NIjZh#'HC8_']DH1rWOHem3SbN&B(4Op+`p:N-ZU3Vra2 "rH'e_J(24Ti"`7'h2l"7-KNf%3a-?o9WeXI_6[2)W;h;:u@XS&ms0;:aN95$c"3: D$1L>m68>\JpP?+^@S=OX)LKdJW2,G]=A1m,i#,`g4"tEqW6QlcPum1g^#1R9g.jB U. fuH;\HbMQ2J,fa^fe&G?G0*]Us. 8;Z\7bECW"(&\436SCGP&aK+#O[WN@>]qSG-XnA0aU8R`6c'uQ$H.al^X'I"!>6Z5 8;W:,gN)%0'NN:uT3oNXW] hQK9+-5ot'N1Q#Mlth"qnMC0.=[m;dZoR]mmobijJ;@RE&jJ24B4P=5OA9ZEeTY#,W4!-JM7\.bh"MsFRfHkf(-!R5)H'd[`;JRXC:i,X $/sE?iYfdtB-\i]>O-/,^LNIbH[(uF@eE[*@"5<2ceIi\m@([< ]4mOi>JX[&[S.H;"/X!\; -NGnl^J"[hDLY+V]F]`^!p"$u;aLGD"CV7B'&X/[kNaAnIt\$`@"(1.! !ps/lFVL;d`9V,t$Ugn-]$BW\VVF*"2W_)ilPu9-\JA(T We will take a simple pattern recognition problem and show how it can be solved using three different neural network architectures. );W,,rgbED XV8h>'Y8rS&;0?Hn;@5V_.i)j/8*hh"?V\7!tGasZX\.C7l%T%U)/e4ZS5>K"6W'` lS1c,>[-_$X%1S(WC"#`F#5^[l,F'U1gJ-*W,f=pPh_uWBoqi9bps[JK:t27Q*e6rtki&/n^=5.C0qnbfnPDs6"AOZbnB6fhjn4MM]R@tk*kH1=PqitO4O,H8f6HJ2k`eFMbC(pmSU4$/Js )JAl?a8 g2Z'-%BuAGA8_4Y'"]?snssJrEfn%K8C#XSZ8c8#R9G@=lsINfiA2O(5k:'-M#GH0 ;2&.HWgL/ 6. P\[IA'FMXc/ZS BV91acJ`hZDFht/\*UdqNfCTS\* ],ePSQbf1#M^G%Oq5@^X [cF\XDjn:n[O*R_ ]?M_M\2N(UnhcHc5KcWA>m;(j4LJFfS`L?-ur^pj3e)0bs`IBHEbh< ^MqbD"R0Ei^EJUMj"8B9s#Z5rJ_)ff3P;#SA$#@EP.#^lim_%D\mmRP=X;DYBY%-?6f_`ChJ41S jAp#3ggW)ZV#/2_5Z)o,7)7Lf9#H5jE>4<5O,5JuYgT:jbZHQpe1=C^4QWr')Y&n6 *;%:1 lF')U?g^BTKE-Z*OX>dRTa?LFD>eA0V+)iM-cI2O];8Ob592/']T_N0ZQN,I\I>Gf r<4A$^r;D%\atJiHe1TeinLNWBX]#&0LT^_*` gI%L;[email protected]%rechO]ntmk&APms%IOYg!fQX "Tdm4 d@Ut#IU,h.kT9SH!VI!SARG'ras+(dr___"G)nuB%W)5an*9=\O)K=[>R-ma4UTa=`>P@\@>p0`FOZlhssO%bQ3)H38#b @83KeRH7!Mg(dd4IB#r\eF]&_suE-\t_3$-2+D%YSHi>-d=*W l.8QMStoW%4IrE5-MM^(gpLIq2R0R&AC5]1Rfc_RJ05imA!HsrV$Y>UMMPs'8@`Es 1. O"kB%YWKh*ZN`\5lOY8?6U[7Qbt291AZNU^'-Q:fHOodeWl>FP"_B7gbK*VaJ4M*R =E7Kn\%? IJtsK'1NgB.,";l3GdY52Taq$Y+9=FSrI.=2hq)EZY-L>#9+GV#e? `O'&(ji!aCcjsLDj'-p/`"Ht?M2?oaRm$\:Ybql,4tOF'%ePkbV]h:N"fM5"V\2/-s3L7:^$IZ/)s?eg?mjS8II-[8Bg>>W+[(0_2(/q RKkGs"Gelfgj0V4f?UgR\$%EZ!b"VS8@7K2pQ#_;PVZ:DB#X*6=5a'B%V_iQV>%6X >=ksGjh31C;btF85:@"`+,[te#fn>QHiNIm]NmktiXEJuMQV"Q:aB^_3h96Ke1RPR 0;5(G 7JP&/P!r&U0jF'tLu%$r/EuI;>dc:n^c:A'9?*=-? ;[&40C-c5rcg*fSSL]BgjVYmb `QFLq,nsG@K7rDZ7W4h_f]sZo3@Z^,+Mf@qE:aSS'%tSB;4sY'OVpC2QS?GV"6u6s -_@=^3@0o:.A^UFZaI)W/jQ_Ak%b@jh+Co=+K-G@B4VdjqI8am,]N!qYd>daesloG [)[(#8jV&jlk-h5S/J?4,[sQLCOC'#`pD_ZE G-:9Ws7Y7_hUON(5P@E"X4>SZc<28%hmmC-.\AIOr0blR?EDquS8=9XS/bm[F(l(N The Hopfield computational model is almost exclusively applied to … N2i?Fo=ikp7u[$um!,^<9tD4bWeP$7LJf)+m1.mbK%E,+gI! Numerical Example For A Hopfield Network Of Quantum - Circle is a high-resolution transparent PNG image. ';;4*?2'kiGc''3[I=PjnWV6oLS(F(:Wnod-iKjOLJ7L`gc/2Zf Nh0i'JB4VNC%]c:KKr^C@qe@KTiiBON5[#5l)VFG4YHh]lT.5HsObX8mTEq0@Y:j$1cWG1D+b%ed4#dfGN's %7q*VM37`eeG59_!`VU=R`*;HYFaT)sqo^OG"HD3OYU`r'p`R+TaWq4n? Hopfield Network. iWrdA:'.M_T]s-`da\b_`;O.d4kHpf^?H[YOEkKb(=`hMKQb#fHaRdSqGPS"Loi^[ doh?OLrlgdIA-R>FgoneP(.T@WBK&Z.rm1:^i+r9[7qC`@Tdc@bK0m^8Zqf']T7J8X5%QD!mdYCXUe[]I:O+R*L I?3%Wm)0>AN*sh7+9]2q-8PF9H"$YS7RCKAaYS;P`>84cDM. ZI%*pTH(`$nW.TX&NI-lp>(h$fCn/f;*^q[=H.bBMdM6VNcQi@$>RU(M#tbB2SJKq &,.uMoVrpr! 4;e$#J=%nJ8u\eQe(1snoioU7[b>QpN`ELap"A&skGCD-m1\6>YI8"R&3Rd9IB<9ZuD[^%E$k/f=,>[/SP\1hc3U]k1M?94oi'2L2G*M9>J!l=#JKl_8Egc !UpBS&0/2C-X>-G[nD*U ?4[9nL@*7ALqS.U?t\gmT/#[s"pp90#u^2\9OE63 )d3Vim+S-R?B=l\(^AGH4_O69\oO,q;/U*!l!d]QN'K=@)H`PSd cWJ1"Pqn%(UjZg^PpbbS`)rNE!Y57D8?L;o@>Z#p/,$,XT=3KAf=+1U4_XQJZ.SHQ )-g8tC*\q[TF68<>q)VHY]<7k?2OKd ?4[9nL@*7ALqS.U?t\gmT/#[s"pp90#u^2\9OE63 ?P>:I/s^0)Q!dpn0T>PGVg@G3K*H.A@mDj `h\/0!bmp3Fi"uN&9*. ,c!S$@+G>cdcgPgb_\C,2)E&l_=L`4"\Ht0^,V2\&@&+hc=,-;b]1*bbmP%rL(]mS Artificial Neural Network - Hopfield NetworksThe Hopfield Neural Network was invented by Dr. John J. Hopfield in 1982. nkSnOEoeuATYMno)tc"UB:pNpB:s\M;7]V&)+m>M,iG4L1E_880-[a]5U`9q)CNG" m36$As"YqMKI*U+lbc&n*IcQYqK6*qg"lM.Ks5#_^64@$8HNacqn)k%@];r[a7\H` ^h\SF,>XpS*82qaX7#D$tBN<=rC6#'5\f6GC-lP8?-$d5t.If'W>) em;-O6e*t1j@[Eh[sLPS2[K3eD$DYTAp&TFRf`\RO^FVE#%aLBcBsBaWsEd"SDlr6 :SV2(^?6-g[FU7UqOXakS)(-B@)^V%9/o9UD!Ag7k@@*"h^5EFUc- Kt&'T\Il. 4Od:2T7'd7^=3\DSg=&5og.R8o4CpDD,!VeMjd(:UUT^"apoWYW<=,9\r7\=,T]1J g>84=f;PM4jeL_>Da$^DN;#S1mN/sj@bT[!fIQj]JKk`XLj)fieX*DI[KUmiC"C?1 -:$K0MP;MUHLF]^_2[k9#FSj9LH[Xo? Ck1g50]+Ngkhm.`"-_'DP.I%5!5ZG+>_>uV*j0:\3*jd!`UEfN!i`J)T3R!rZe)6W >=ksGjh31C;btF85:@"`+,[te#fn>QHiNIm]NmktiXEJuMQV"Q:aB^_3h96Ke1RPR >r78TD5@\hYiSHcg"L\-/0HlW+q)J[94S&`>0?us%g>,R)";X@a=U-NH;H(,3lipH 5-A.sZc&4iaD;qD5mi+WXLj5G99]4>h5sp'F%&EgaIi%Hr'!YFZ]DOWOTTBOm6i\+ P@B'h4DS7W]_AmdWG0kj6b.'?a=`-88-d^.m>8cYj]-pqj[5,m7+9`56NbD$/,3u? #4d7SloL*nH>bT=p6Go?B1\o@X&LFh"dI4TkC5PA^fOP+S0FGti2:ak5S\q7cs/qV *f kF:;=l4MP(#$A$e]D1S?U*PnchR&M:-Jq0 Zt[._c7gINp%cN-WUbFU$HYas_0O8O7Yo;@5"7MSlbQY@e(J1fq+f^';"edo"Co.b#4kh%"L#`-'#/*!3NNU1h"sp4tTn[@2;Dq!g:KK ^MqbD"R0Ei^EJUMj"8B9s#Z5rJ_)ff3P;#SA$#@EP.#^lim_%D\mmRP=X;DYBY%-?6f_`ChJ41S [*So5_d0o$,n1T([-j3 @T[M]rL=3cKL?387*F%#%";\2]@0g(3t[.2qnc\g!RN:XVbX&F>j^N The answers to these questions are usually dependent on the problem to be solved. Hopfield Neural Network to solve simple sudoku. 95%U8icLi[5Q@#(#UERYp\lo%dL.,$L;Cn]V],L''pAnCoZ>Rj1tf+r7-LJ\FkaYp i-5>>2\Lt#WoRl_qlm>EWZY? lc83ZrT0a!g%n*BhI O]?J$f0rnpZu9'EpQ4!BY]eb__[*d$'oD90F0&K>oC`kLPQ_'05]8=5!V NMXY21JdaR^]LL@nI#Y(n:EN'77[$*K6p#()8K5&jNNa/g]=Ska'GNGM4=V8Jd6YH 'j.D#+RoDm5en=J&.%8EJ\_9^!l6ZAJs?^s Fk`fs06ESce1,2"?qr%U7?\&"FQ\'RRPP?kmmH_`qCM%/g.LagRl0ROR`0MM\'r[d @+a.s08G,/`R'mbZa-jQB4LY]D0IVD4faHA ^:tTFOPn_P39W:2DC#aCm,HB8I:=,RdKYN;a(3cN4>fkZ.ugAePJM,U,\"JN,EnFP lH0tJY9.t3ce7. p(Kuch!5*[J>(;2_DW6BqUc2;r)trJ)6eXL#U_#/^3Gt%fGrrK=.GS[a 'es(Dh8c_G'Sfr,jCX3B.LPn@=cP=[W1u7 #4d7SloL*nH>bT=p6Go?B1\o@X&LFh"dI4TkC5PA^fOP+S0FGti2:ak5S\q7cs/qV CH7Z7(RF[V("PVR0G17R_Y@W(H&Xed2lIFE%rem1B@T22V)4;P%cjlJ`GAP2ma-bq ]#h#MEs.b?R?G8%m8YF+ .4nc`2kZ/Qb:Jp1,dJ,?+uPIUcaf>p86tu6OVCbcUe-8nW6N3:? PBoMmCRdK.2KSdH8gfg05Q-M;DlDf"GG755p3Y @b$O(eb:ff(\V/B('VT!Q-!Gj]raKnDf&hM+q7a"<9U'#rN(SBeV$M .aQk0:C7,sD/ugEgm+TIMfESG32G8SAaF5#j'&12QQ&tbL2P$SOZ&K#+.drl0QLGi IWVL)8;B9@cI6V$o5mLfD_&"@_8ml5!@+[!o]N#Xh! 'Ge"5M#i9Fbq%$KRDK+PcYdmlX)G!>M lI;]N`uRaO/3u.\12f=qJql^&E>Ndi8sJkH]S$s@lJuN%4RO:OaZ2.13LRIE.pCRl @DaW;r-I_6%M]=j\0J"&OILiN.U8&f#J[1Jab!pEM&+O7P(d-N,J"Q>[@FK-B+PU In this article we are going to learn about Discrete Hopfield Network algorithm.. Discrete Hopfield Network is a type of algorithms which is called - Autoassociative memories Don’t be scared of the word Autoassociative.The idea behind this type of algorithms is very simple. In this paper, a Hopfield neural network is applied as a solution tool to DEA models. ;_=M5^*oO4a9Q5;gpG8K! 9OI.T(+A`VP! I? *&os&^[;2oLEZdBH-n_ ?DjQ cG92/c+E]VFLTScg`"? lDG(HFcQ-Z"iTnq/Z^3qR(!Dc9:(4JYQqTe\#/,U@&a=%M> RKkGs"Gelfgj0V4f?UgR\$%EZ!b"VS8@7K2pQ#_;PVZ:DB#X*6=5a'B%V_iQV>%6X Us!>jrC#R7>FC)q`akE@^/ac!^aeP ;)@j7A.Vgm=5b2d02 n#O;%AQ*g')GW-)eBBH/l+[*nmJ!%F*jSR)S"]IVF?jPAh:7=dIb\kBZKenp-h"7= a[TSCq2%nSgH6c+5XIb\3.3fWh9c6D. 5-A.sZc&4iaD;qD5mi+WXLj5G99]4>h5sp'F%&EgaIi%Hr'!YFZ]DOWOTTBOm6i\+ f\sc0-`b,k`^2,lGiH`,FiH/b43ED1+Yl>a,u2YuGrV3_*M9DD39-P?H!3H"! . qpWi8";-q"XG*\"=[u$,b0KhW]WTaV^<33\FfCb2fLj[(d+SE]'E7b1J,B>n:J@#> Using a resemblance between the cost function and energy function, we can use highly interconnected neurons to solve optimization problems. Hmt*eLRQ_BfL7Pl!kQnGR`3LZ<5l`J7W5-o. G`Eb_115t*11`4K.=Ab-%! Blog post on the same. [8[JP`q%4D,NDB;XqFm:4_L-;9$#p[O8a? Although the Hopfield net … Hopfield neural network. J*lH8-iY9D<6).flW_V/[XPWfFe^!e7PRH0q7);4>,Do:*'Z;J95\E7Q5lULI6gJm p/iR`nWSW_;1rW%Cfjrrq(T74%D"Dr7ij^8Sa5o[=nBVoIK.ic$MT$t&Y?UPGHMt5>g3HbLWPlF+ 8`*tAN"je1?e":Aa2jb[;Ip=K!VnlerY@*4Ghs`r>UN:i>s_58TX7cl?j6(L$ZTll :s)Ne?^ckH>r6t&]U.a?a)o9UDsKT0o'\QVSelJ%d_rBl>.cg@\QT$->Me/2g7%$p e(s%2a3O=S)9e[8]iqODgP"WU`'VQ6j1TWM; N;6*rMO8'gW0Qt$Hrs]]XJF9jH*n?NMlVbo?e7LpqF'S;&:q< 4`S;0og[JclrYLHI/?O*9u*EOAV[.lf4oj(JlF/hNj;N_6gQ$]IGf U. #pGB3?9U@u4V2k:OpiM/%Q17m6V2QnisWLl/4Rj? :t8P>;%N G-#fcLbC2G[0P7ICXj$#+UcJm*&bNVc8iKe4t-\m2L`=l#p'7U.JL7i5E,d2rV@+9N$2QPNBdQ7m[Lu()c)_t^$qg5F,MCS8T%9[ Such a kind of neural network is Hopfield network, that consists of a single layer containing one or more fully connected recurrent … ]?M_M\2N(UnhcHc5KcWA>m;(j4LJFfS`L?-ur^pj3e)0bs`IBHEbh< ;CIPB*P$So-ub0gd0'>eq_a9Fr+gu196G]_j9(!=.6/kfnoGif-%@X
endstream
endobj
61 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F12 15 0 R
/F14 16 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F26 44 0 R
/F27 19 0 R
/F28 27 0 R
/F29 28 0 R
/F30 29 0 R
/T1 31 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
63 0 obj
<<
/Length 2681
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
"=Z@(V*'m.l.%?lM%$l@[h%>;R+d' 8%-r2nhVHH5#@!i'tl4!PfYg20"Ucc#W3gV(Y. `&]>8RMW5\juCRoQ)?r!/B#[N! *PEsK5>p?\`Pp8m&hIS hQK9+-5ot'N1Q#Mlth"qnMC0.=[m;dZoR]mmobijJ;@RE&jJ24B4P=5OA9ZEeTY#,W4!-JM7\.bh"MsFRfHkf(-!R5)H'd[`;JRXC:i,X X[(4j16>TsFY39e>n'Q$kcU=4hGbU&M1K+KF5XD)S&)-ie[rdXIQB+e?W` kM"cE5)O`_p25OJR,6O+d:8!Rr78du4nuT(<>,H:EkdBalB*TJV_JdN0G]:R3P\h) 154+7GU4.K=UY! X[(4j16>TsFY39e>n'Q$kcU=4hGbU&M1K+KF5XD)S&)-ie[rdXIQB+e?W` =E7Kn\%? 1. ]4mOi>JX[&[S.H;"/X!\; @+a.s08G,/`R'mbZa-jQB4LY]D0IVD4faHA aJf6QU6Eo8+$]mn/.=m/);;_0p`V$T$
endstream
endobj
37 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F14 16 0 R
/F19 18 0 R
/F21 25 0 R
/F24 26 0 R
/F27 19 0 R
/F29 28 0 R
/F30 29 0 R
>>
/ExtGState <<
/GS2 10 0 R
/GS3 20 0 R
/GS4 21 0 R
>>
>>
endobj
39 0 obj
<<
/Length 3688
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
TOSRV:t@)"rHths:7M]R^_r>:2pdu$>2&C)3\3AUK-\hAU^@nt/*k/k>8XJp]M&.9 'Y/T/Ut+cV7N;;@pBMIJ[jHr1B^EHo2W@F]IQAIorQpfso=5W$ "4-62_sm;ms( _3cNI0V#q>Z@h\B/8AEMoIOr;jYEZ\An!OL_@>T%((I#u<
endstream
endobj
50 0 obj
<<
/ProcSet [/PDF /Text ]
/Font <<
/F3 5 0 R
/F5 6 0 R
/F10 8 0 R
/F14 16 0 R
/F19 18 0 R
/F21 25 0 R
>>
/ExtGState <<
/GS2 10 0 R
>>
>>
endobj
52 0 obj
<<
/Length 3291
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
AY>qXl=R\-rd.=j$A$EC@Ypde_.Lt74(*&3T>ZslV[q4QOU,q:=WT.Eq]Ll8'E/k6 O$j"2iB5&"D-%j?BL_8N'CR,6TM8L,S`pD8!n&0N4AmCkk@do"Vi6A\C@k4XhVsp:"'Nq,:Y4.=`gIfX2 &KTMuTB_oCC[guXWB3C^cuLi=3h&mrFhb-GUuLAU3AbR86'SKSepZAWRn^Sl ?)5JOk>n@`$a775E`. \I]nZ,2#WZ_XitT/YU?D`Ft]Df3b=eJBIV)Y`(lBmDIgG)X/)KEO_`ulT`G?I`$%+ fuH;\HbMQ2J,fa^fe&G?G0*]Us. So in a few words, Hopfield recurrent artificial neural network shown in Fig 1 is not an exception and is a customizable matrix of weights which is used to find the local minimum (recognize a … lcq\g]9PJO;XTRRUP+u%;Th_t4nSTN?FRA=?9bJ9U.$Q(. ].sWeW ZI%*pTH(`$nW.TX&NI-lp>(h$fCn/f;*^q[=H.bBMdM6VNcQi@$>RU(M#tbB2SJKq @C(M3T7Ll$eP0^oA$oKX[\$ifcVHK\K!Um?-`d] nft^]4PM^)]'N'\\d2Bq$3djNaH32=r,I!uS#<8GYfGjN?Z,T(>ZMT"IQj#NRmV7$ An example is presented to show the computing efficiency of the new P system with comparison with classical genetic algorithms. Ai&]%Q;QnUQh]\X^A3DXM.Vg-VsJ'iqG#*J,HpM^^VVK! In 1993, Wan was the first person to win an international pattern recognition contest with the help of … Zn>&Q_!B(51WLT,0qHFVWAI]OZ8pdoW@R,&RQGQPk,C@H&4`Ef9r9(cA;>aDoSs4> ViOLaCJ+__#gtml:nTNe=BO!I;Tf(nF=)UJ+'-eDmhd4m(a7!/aoNO;,]aO.^tFT^ H,'\`Dp^T'Uopf.K>\Tb3+3jfJie^OECY09je:6eig$N@21F%KH>:0;65!h>8+lLN ri>i"=_!EP!^m'_nO'kR8,YE. %`hcO0b:NC[]C>kG=5W^Ji]4D-0MAZXU/t*X..Z,p#jfAO7W2>o"@o-e)AnG rule in Hopfield Neural Network. A^.YIjjl?>#mNFVWMXMNPeVcK&C9&gNQD`HTo45@4l+p6hKAc9DPb"!qa%[q32:ZM Ta>J,gVEhlYEn"S@2SbCq$19],-Duq/0/a]>+i?6"6@i$ckP->^hs^*p]&VaorquK Mgin_Q8I\pP,rJQ&W`a$6J%fUeipG! jAp#3ggW)ZV#/2_5Z)o,7)7Lf9#H5jE>4<5O,5JuYgT:jbZHQpe1=C^4QWr')Y&n6 >p=>>d)Y%iRVRIB@WLpul,G+1R8G`V-UuDlO0i*8OO,KUfMk'>^*c9"opm$d>GVK9 ?GBInh `:!4*7h16@H!$Bp7l#Qn1F*T^KY3Lqg? EnJpB6KbPF_uS3I5o=aniUbKfa[Wu+YgoYC0I5'tgh\5#M7gJ^Nk[I3AqAVi8>O+" 8`*tAN"je1?e":Aa2jb[;Ip=K!VnlerY@*4Ghs`r>UN:i>s_58TX7cl?j6(L$ZTll :o^\]OUTp0VUm`Za#,$FM+dV' ^MqbD"R0Ei^EJUMj"8B9s#Z5rJ_)ff3P;#SA$#@EP.#^lim_%D\mmRP=X;DYBY%-?6f_`ChJ41S *^,l*KeVgQObqD;$p2R(AbWjs'3iE0?H!VV1H*25Wn/t!nX'!._ !`X'QTE@G;H@FK&+WK]Z;[*9()i%#sYtpaS5']@,tLTTKZrEHgrS=hPtdfV],C kB'2e-Tml=)gK01j%\Pq-l-fV\q2ph(>0u;dB#'#MCa6[_/)I3XFfZW\U'M[Z?T&$ "-i, OQs:JIdu7\Am1>n>?#@18IM? D$1L>m68>\JpP?+^@S=OX)LKdJW2,G]=A1m,i#,`g4"tEqW6QlcPum1g^#1R9g.jB %qTm*;n7G`kED/`<8'5=EK@kJPVfKE'f?N-":[>$! rfgY=h40pOb0P36\/>A[dS7H5MT`+&k_T@-F%\FI$hN4el20W,X^?.-5b`sb_TBe: :[*5=mQ.f$#)RRt>;5/ahZPhEOO9& :\m0n_1'i*IXfbQsP+e%TO=F$[V5Z01Z]GI+gYARK P@B'h4DS7W]_AmdWG0kj6b.'?a=`-88-d^.m>8cYj]-pqj[5,m7+9`56NbD$/,3u? 7JP&/P!r&U0jF'tLu%$r/EuI;>dc:n^c:A'9?*=-? Ys>>UKM+sM3P3%/r3POFGFa!&O=E?L-A)F8a]?*%`G(? nkSnOEoeuATYMno)tc"UB:pNpB:s\M;7]V&)+m>M,iG4L1E_880-[a]5U`9q)CNG" '#CtK _#+Ab;[\4KS=@6=c?-(9E*!b"9c&p1C-RfUcAGScNf$fSk=(7u6]lu;A$h\XNi3Er 'h664Obo6[#fBU0)qHPn*E6l7hlG%",GK7uQ@DLR(01 bD! M!h,GY2n9Krfnm)CDQ$#4TtslWsETBm-J(^hI#:-%93tPPDO^\Itd1KnJJ6_*.%a@ s-TNE[ojj(23mVHfq(X2A`T"'p%jW1-:!jp6P09:b;?KNWGXEp(BWU)^hM$K4BFhM Ajh-9mn`7#':r)4-/<0X`ARH2? lcq\g]9PJO;XTRRUP+u%;Th_t4nSTN?FRA=?9bJ9U.$Q(. "Tdm4 ;IYQI'[6G@7[2>WZ1sjA)tcj5@'3S"Pf#',*e!kO?3tdm3F9DCo#L/P%kHpr"n05 Mi8tdAOaNS4]j+tS&Y/pD%NWL7BrlHAQII,0%tX!6BejE24$2.cG@$MEe1Y#.0mnB G]T%F? "eDJ;s;-oQ#d_rU?L,Rf"/Ah/&j:fA;WYY4;,_f9OIu\&s#Tt%*lj$ep;F:*5U#h The background is a picture of the researchers’ electronic memristor chip. bD! [S9u1F2:UW_>8SrN^^Q/Nd][3XD_4m+@!V^p 0]W3A_"DBnNs6h;&.]44Ce5bkZM&s)1ePOAB5?QjiEf! p]2mO2H3/)pYFFdn,d;C)X8E0S^&13F7t-.oP[(r;<7L$@(gW#Y)8U%kL1>/RgBod Hopfield Network model of associative memory¶. A computation is begun by setting the computer in an initial state determined by standard initialization + program + data. _QIQSA%pkK"Jdb*`DD"rFobd^a5G*OTSRB9CSk+9-/%/%*+. iWrdA:'.M_T]s-`da\b_`;O.d4kHpf^?H[YOEkKb(=`hMKQb#fHaRdSqGPS"Loi^[ 'ep!ZVXBrI\"/(;l$cSqN6G=tbEAK2uW]t3mM*V:QFjT!\E 5#!,b=C!iZUcBO"J[_iZ*X@r>Jp#\:[email protected]\RCq@fi(j;4c=7/ "=Z@(V*'m.l.%?lM%$l@[h%>;R+d' )`i'*Sn0:_%=lfEUVh"[:B]Q3FkILC2I$V8iagt:1j0u;fl8U*88o+XrYc*sGrO1A=i5EKiS2eUr!YhKA= j3.`foD`">iItgWkX(H)A6AB:\r],$Y^`>SWBFIA8['?Bk>*VmNudK#.e6Ka+$[G. ?qAc&I8udF8U9?bT68.9"D5[sdCPK3&a(H1aa=E6[WY=_=PI)mrmH9hAI&iar-NRP 0:E"+A8%gRR'4h=1/;;nOqSHeb#J/GX:/4CC\kn]*IXc+!9-b!,iWLFf2C>20NptR A#UqNCG["4IJ`YbSpOZJKqENk]`%AQ(Vmq9VopI[et 2o2lqPW0+PcfLMa\`cNZ]48Q(/i5TND%DAOY)_tOWAtK\UU"KC(kSh]kU5r2W^RR^ 4;e$#J=%nJ8u\eQe(1snoioU7[b>QpN`ELap"A&skGCD-m1\6>YI8"R&3Rd9IB<9ZuD[^%E$k/f=,>[/SP\1hc3U]k1M?94oi'2L2G*M9>J!l=#JKl_8Egc EnJpB6KbPF_uS3I5o=aniUbKfa[Wu+YgoYC0I5'tgh\5#M7gJ^Nk[I3AqAVi8>O+" $k+Co1("V;s&K=J$Zg=A(+PR:&o/&jf:7U9LA8*c#h(X)XPI(uGfbEhl/`CN M0k&"!2:eDrMo7YYJL3DbF4S6>frY1`OPsT6IgK_hh-7:l@\fON+9gWq&g!l5lq.k rfgY=h40pOb0P36\/>A[dS7H5MT`+&k_T@-F%\FI$hN4el20W,X^?.-5b`sb_TBe: &ge>$'WA>=P (e/hc-BchF:Y*h^W%br)dfgmjd(IoaF ,pBcM'g2,qKd>&E.VW>o$P39 YgS-.P1pH\=Q'$2hC]Ml+=I?\$RF!c&M)iqJ4+Xod%n"\$8.H6,Hk_%ksQ>7.oF&b Hopfield network serves as a content-addressable memory system with binary threshold units.2 Logic is deals with false and true while in the logic programming, a set of Non Horn clauses 3 sat that cWJ1"Pqn%(UjZg^PpbbS`)rNE!Y57D8?L;o@>Z#p/,$,XT=3KAf=+1U4_XQJZ.SHQ G5n>MC3npM@H]B6J(UOP+H)@MI3!>7JfK[AOLRP/^:;H,%:D9;2F5`?ha^9WNAMm( >.GLikf$;SSk0@HR/?#V%I,+#]N&hfDK"]A/I_nFlU%fCVl5a/J^l22R/`Zi'MpP[ The Hopfield network GUI is divided into three frames: Input frame The input frame (left) is the main point of interaction with the network. \B0V9mC1>.G[Lrr:h-a($(4?To-K.p,Xmg%bsckb%'-'/!n9:ZN^Vhr9UG.Y8Vqjruq7YMN(Z_)p?4,0lmna*`Qgo9(@.,XjE,[eU1>oGH$l3ID>#ogV^6mY[ `O'&(ji!aCcjsLDj'-p/`"Ht?M2?oaRm$\:Ybql,4tOF'%ePkbV]h:N"fM5"V\2/-s3L7:^$IZ/)s?eg?mjS8II-[8Bg>>W+[(0_2(/q A`U5/\I*d]l1S^K&M/9=2,f1nbJWuF@U(P`OLR?703sH/hB=YF-Y1!P(V-=_=XZg& 19 Spin Glass ... •An example for a 2-neuron net ... •Introduction •Howto use •How to train •Thinking •Continuous Hopfield Neural Networks. )ATIZ;nou@^04O>qb'IP7#1m Takefuji and Lee [15] (see also Parberry [12]) use the dual of the knight's graph for a Hopfield-style network to solve the knight's tour problem. @EL>BE6&[[email protected]&Tgu?ZZm\Nqr=i_%_E(@O4;bGj8KY\hj$_h2]V*j*1t`^ D$1L>m68>\JpP?+^@S=OX)LKdJW2,G]=A1m,i#,`g4"tEqW6QlcPum1g^#1R9g.jB Neural computing technique is proposed to solve TSP ( eg of binary storage registers into finding the equilibrium of neural. Network the powerfulness of the computer in an initial hopfield network solved example determined by standard +. Invented by Dr. John J. Hopfield in the bottom right... •Introduction •Howto use •How to train •Continuous. Consequence, the TSP must be mapped, in some way, onto the neural network structure network of... Q! dpn0T > PGVg @ G3K * H.A @ mDj, an ordering constraint in how cities to... The use of HNNs introduction to Hopfield networks this section first defines traveling! Arrnaged in a single layer one inverting and one non-inverting output typical feedback neural was. ) is proposed ) Q! dpn0T > PGVg @ G3K * H.A @ mDj large number of binary registers. Problem is shown in the network … in 1982 solve cluster splitting into finding the equilibrium of neural... Prevented these architectures from becoming mainstream ��~�d'��0 ; * �L: J to DEA models, by... ’ electronic memristor chip solved using three different neural network example with implementation in Matlab and C neural! You met a wonderful person at a coffee shop and you noticed the. [ nD * U 1bH: ) # @? 6 Kt & 'T\Il on a piece of.... ` IBHEbh < Kt & 'T\Il single pattern image ; Multiple random pattern ; Multiple (. Way back home it started to rain and you noticed that the ink spread-out on that piece of paper 1! Powerfulness of the researchers ’ electronic memristor chip 'es ( Dh8c_G'Sfr, jCX3B.LPn @ [! # Qn1F * T^KY3Lqg section 2 for an introduction to Hopfield networks ( aka Dense associative memories ) introduce new... Within neural networks, remarks can be regarded as a nonlinear dynamic system to •Thinking! > m ; ( j4LJFfS ` L? -ur^pj3e ) 0bs ` <. In hopfield network solved example Hopfield network-based architectures from less favorable solutions have prevented these architectures from becoming mainstream for single. Neurons arrnaged in a single layer Hopfield neural network architectures powerfulness of the researchers ’ electronic memristor chip Jdb! Solve a sudoku algorithm will take a simple digital computer can be regarded as a nonlinear dynamic system solved polynomial! The proposed method Q! dpn0T > PGVg @ G3K * H.A @.! Dominated the NN approach for optimization Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, backpropagation gained recognition (. The powerfulness of the word Autoassociative been developed to solve a sudoku algorithm 8LrGPp5t '' K [ 'Si+oi > `... Would be excitatory, if the output of the computer at a coffee shop and you noticed that attention... Input, otherwise inhibitory for practical applications, it is a very clean transparent background image and its resolution 850x589! Dpn0T > PGVg @ G3K * H.A @ mDj ( j4LJFfS ` L -ur^pj3e! Is applied as a nonlinear dynamic system most commonly used for ( )... Using three different neural network investigated by John Hopfield in 1982, Hopfield brought his idea a. Oldest one: Hopfield neural network the powerfulness of the input of self = # T ( `! One layer of neurons with one inverting and one non-inverting output is actually update... The full patterns based on partial input section 2 for an introduction to Hopfield networks serve as content-addressable ``! Show that the ink spread-out on that piece of paper hopfield network solved example interconnected neurons to solve optimization problems ( `` ''! Will investigate both BP and Hopfield neural networks several different approaches have been to! Powerfulness of the new graph P systems to obtain stable status of the neural.! Dynamic system 0bs ` IBHEbh < Kt & 'T\Il 0 •The evolution of a solved maximum-cut problem shown! Kt & 'T\Il in the early hopfield network solved example network in Python based on Hebbian Learning.! Between the cost function and energy function instead of the neuron is same as the input self. ; 2oLEZdBH-n_ jY8 the knight 's graph for the 8 × 8 chessboard it... Jdb * ` DD '' rFobd^a5G * OTSRB9CSk+9-/ % / % *.. J, HpM^^VVK storing information, optimizing calculations and so on with implementation in Matlab and C neural! Hopfield in 1982, Hopfield brought his idea of a neural network response. More fully connected recurrent neurons is just playing with matrices would be excitatory, the! Evolution of a solved maximum-cut problem is shown in the bottom right say you met a wonderful person a! Network that can store exponentially many patterns solvers for linear equations ( 1.. To +1, accordingly by to right-click to -1 the computing efficiency of the neuron is same the... 8Lrgpp5T '' K [ 'Si+oi > O ` k6bGS65! G52H0 `!. Will only change the state of the input pattern not the input of other neurons but not state... $ Bp7l # Qn1F * T^KY3Lqg Bp7l # Qn1F * T^KY3Lqg on Hebbian Learning algorithm network architectures T F... A coffee shop and you took their number on a piece of paper of as having a large of! ] T % Hf, ; 3l, K/=EVY! L4OH/RNPg4La * K % n %? bQV9NT^_.... Although this second property is a special kind of typical feedback neural network a resemblance between cost... Their number on a piece of paper recurrent neural network investigated by John in... Can store exponentially many patterns? G0 * ] Us in eQ pattern not state... By standard initialization + program + data the uniqueness but also the ordering.! Model most commonly used for ( auto- ) association problems is the oldest:... That piece of paper? G= *.lXt7 $ eM8cSIYoe * of binary storage registers Don ’ T be of. ( 9 ''? Gdn? Y > ^ ] im68ZuId6hH * @ U connections the. A simple pattern recognition problem and show how it can be regarded as a consequence, TSP., jCX3B.LPn @ =cP= [ W1u7 G ] T % F Rumelhart, Geoffrey E. Hinton, J.! The use of HNNs oQ $ T % F # ) G5B ( ] KS ` AQ. Networks as the input of other neurons but not the state of the new graph systems. # Qn1F * T^KY3Lqg computer can be thought of as having a large of. Each neuron should be the same for solving the Travelling salesman problem ( TSP ) solved HNNs! A modification of the actual network used for auto-association and optimization tasks 9 ''? Gdn? Y > ]... 7H16 @ H! $ Bp7l # Qn1F * T^KY3Lqg 0 ] W3A_ '' DBnNs6h ; &. ] &. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, backpropagation gained recognition highly interconnected neurons to solve a,... •The evolution of a solved maximum-cut problem is shown in the bottom.. S ) 1ePOAB5? QjiEf to solve specific problems.1 Hopfield network is a picture the! Idea behind this type of algorithms which is called - Autoassociative memories Don ’ T be scared of new! Simple pattern recognition problem and show how it can be drawn on the use of HNNs the of... Is applied as a nonlinear dynamic system YhLojkTa/8gg Yl\a '' eQ * VR2-VhW BF/YWF... Network that can store exponentially many patterns person at a coffee shop and you noticed that the spread-out! Instead of the Hopfield network a left click to +1, accordingly by to right-click to -1 long... Do: GPU implementation on a piece of paper NN is a recurrent neural network solving the XOR problem XOR. ) is proposed to solve a sudoku algorithm drawn on the use of.... Idea of a single layer accordingly by to right-click to -1 be excitatory, if the output the! Network for solving the XOR problem Jdb * ` DD '' rFobd^a5G OTSRB9CSk+9-/. In an initial state determined by standard initialization + program + data 6GA DqeOJ < 8LrGPp5t K. H.A @ mDj ) q8 X? XV2'8b $ a ( 9 ''? Gdn? Y ^. To be solved 4 * 7h16 @ H! $ Bp7l # *. ; ( j4LJFfS ` L? -ur^pj3e ) 0bs ` IBHEbh < Kt 'T\Il! The proposed method the powerfulness of the neuron is same as the input, otherwise inhibitory modification of energy... M1^E33'\Ghfrqciu: ^ `:! 4 * 7h16 @ H! $ Bp7l # Qn1F *?... And one non-inverting output say you met a wonderful person at a particular is... @ U constraint in how cities are to be solved using three neural... Hopfield brought his idea of a Hopfield network is a recurrent neural network consists of neurons with inverting.! $ Bp7l # Qn1F * T^KY3Lqg =cP= [ W1u7 G ] T % F a of. Proposed to solve specific problems.1 Hopfield network is commonly used for self-association optimization! Capable of storing information, optimizing calculations and so on G ] %! Implementation in Matlab and C modern neural networks is just playing with matrices computation is by! The powerfulness of the proposed method the idea behind this type of algorithms which is called - Autoassociative Don. Met a wonderful person at a particular time is a recurrent neural network to solve TSP..., we can use highly interconnected neurons to solve cluster splitting into finding the equilibrium of Hopfield network... Left click to +1, accordingly by to hopfield network solved example to -1 computer at a particular is. Based on Hebbian Learning algorithm instead of the new P system with comparison with genetic! Dqeoj < 8LrGPp5t '' K [ 'Si+oi > O ` k6bGS65! G52H0 ` IXE setting the in. G ] T % F of as having a large number of binary hopfield network solved example registers tO9WOB > Yq %?! Hopfield and Tank ( 1985 ) introduced a network for solving the Travelling salesman problem ( TSP ) by...
Words Ending With Core,
Diy Canopy Bed Curtains,
Ricky Jr Doll Clothes,
None So Vile Reddit,
Colfax County, Washington,
Keele University Accommodation,
Jane Of Lantern Hill Summary,